1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//! A set of macros to generate Rust source for PHF data structures at compile time.
//! See [the `phf` crate's documentation][phf] for details.
//!
//! [phf]: https://docs.rs/phf

use phf_generator::HashState;
use phf_shared::PhfHash;
use proc_macro::TokenStream;
use quote::quote;
use std::collections::HashSet;
use std::hash::Hasher;
use syn::parse::{self, Parse, ParseStream};
use syn::punctuated::Punctuated;
#[cfg(feature = "unicase")]
use syn::ExprLit;
use syn::{parse_macro_input, Error, Expr, Lit, Token, UnOp};
#[cfg(feature = "unicase")]
use unicase_::UniCase;

#[derive(Hash, PartialEq, Eq, Clone)]
enum ParsedKey {
    Str(String),
    Binary(Vec<u8>),
    Char(char),
    I8(i8),
    I16(i16),
    I32(i32),
    I64(i64),
    I128(i128),
    U8(u8),
    U16(u16),
    U32(u32),
    U64(u64),
    U128(u128),
    Bool(bool),
    #[cfg(feature = "unicase")]
    UniCase(UniCase<String>),
}

impl PhfHash for ParsedKey {
    fn phf_hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        match self {
            ParsedKey::Str(s) => s.phf_hash(state),
            ParsedKey::Binary(s) => s.phf_hash(state),
            ParsedKey::Char(s) => s.phf_hash(state),
            ParsedKey::I8(s) => s.phf_hash(state),
            ParsedKey::I16(s) => s.phf_hash(state),
            ParsedKey::I32(s) => s.phf_hash(state),
            ParsedKey::I64(s) => s.phf_hash(state),
            ParsedKey::I128(s) => s.phf_hash(state),
            ParsedKey::U8(s) => s.phf_hash(state),
            ParsedKey::U16(s) => s.phf_hash(state),
            ParsedKey::U32(s) => s.phf_hash(state),
            ParsedKey::U64(s) => s.phf_hash(state),
            ParsedKey::U128(s) => s.phf_hash(state),
            ParsedKey::Bool(s) => s.phf_hash(state),
            #[cfg(feature = "unicase")]
            ParsedKey::UniCase(s) => s.phf_hash(state),
        }
    }
}

impl ParsedKey {
    fn from_expr(expr: &Expr) -> Option<ParsedKey> {
        match expr {
            Expr::Lit(lit) => match &lit.lit {
                Lit::Str(s) => Some(ParsedKey::Str(s.value())),
                Lit::ByteStr(s) => Some(ParsedKey::Binary(s.value())),
                Lit::Byte(s) => Some(ParsedKey::U8(s.value())),
                Lit::Char(s) => Some(ParsedKey::Char(s.value())),
                Lit::Int(s) => match s.suffix() {
                    // we've lost the sign at this point, so `-128i8` looks like `128i8`,
                    // which doesn't fit in an `i8`; parse it as a `u8` and cast (to `0i8`),
                    // which is handled below, by `Unary`
                    "i8" => Some(ParsedKey::I8(s.base10_parse::<u8>().unwrap() as i8)),
                    "i16" => Some(ParsedKey::I16(s.base10_parse::<u16>().unwrap() as i16)),
                    "i32" => Some(ParsedKey::I32(s.base10_parse::<u32>().unwrap() as i32)),
                    "i64" => Some(ParsedKey::I64(s.base10_parse::<u64>().unwrap() as i64)),
                    "i128" => Some(ParsedKey::I128(s.base10_parse::<u128>().unwrap() as i128)),
                    "u8" => Some(ParsedKey::U8(s.base10_parse::<u8>().unwrap())),
                    "u16" => Some(ParsedKey::U16(s.base10_parse::<u16>().unwrap())),
                    "u32" => Some(ParsedKey::U32(s.base10_parse::<u32>().unwrap())),
                    "u64" => Some(ParsedKey::U64(s.base10_parse::<u64>().unwrap())),
                    "u128" => Some(ParsedKey::U128(s.base10_parse::<u128>().unwrap())),
                    _ => None,
                },
                Lit::Bool(s) => Some(ParsedKey::Bool(s.value)),
                _ => None,
            },
            Expr::Array(array) => {
                let mut buf = vec![];
                for expr in &array.elems {
                    match expr {
                        Expr::Lit(lit) => match &lit.lit {
                            Lit::Int(s) => match s.suffix() {
                                "u8" | "" => buf.push(s.base10_parse::<u8>().unwrap()),
                                _ => return None,
                            },
                            _ => return None,
                        },
                        _ => return None,
                    }
                }
                Some(ParsedKey::Binary(buf))
            }
            Expr::Unary(unary) => {
                // if we received an integer literal (always unsigned) greater than i__::max_value()
                // then casting it to a signed integer type of the same width will negate it to
                // the same absolute value so we don't need to negate it here
                macro_rules! try_negate (
                    ($val:expr) => {if $val < 0 { $val } else { -$val }}
                );

                match unary.op {
                    UnOp::Neg(_) => match ParsedKey::from_expr(&unary.expr)? {
                        ParsedKey::I8(v) => Some(ParsedKey::I8(try_negate!(v))),
                        ParsedKey::I16(v) => Some(ParsedKey::I16(try_negate!(v))),
                        ParsedKey::I32(v) => Some(ParsedKey::I32(try_negate!(v))),
                        ParsedKey::I64(v) => Some(ParsedKey::I64(try_negate!(v))),
                        ParsedKey::I128(v) => Some(ParsedKey::I128(try_negate!(v))),
                        _ => None,
                    },
                    _ => None,
                }
            }
            Expr::Group(group) => ParsedKey::from_expr(&group.expr),
            #[cfg(feature = "unicase")]
            Expr::Call(call) => {
                if let Expr::Path(ep) = call.func.as_ref() {
                    let segments = &mut ep.path.segments.iter().rev();
                    let last = &segments.next()?.ident;
                    let last_ahead = &segments.next()?.ident;
                    let is_unicode = last_ahead == "UniCase" && last == "unicode";
                    let is_ascii = last_ahead == "UniCase" && last == "ascii";
                    if call.args.len() == 1 && (is_unicode || is_ascii) {
                        if let Some(Expr::Lit(ExprLit {
                            attrs: _,
                            lit: Lit::Str(s),
                        })) = call.args.first()
                        {
                            let v = if is_unicode {
                                UniCase::unicode(s.value())
                            } else {
                                UniCase::ascii(s.value())
                            };
                            Some(ParsedKey::UniCase(v))
                        } else {
                            None
                        }
                    } else {
                        None
                    }
                } else {
                    None
                }
            }
            _ => None,
        }
    }
}

struct Key {
    parsed: ParsedKey,
    expr: Expr,
}

impl PhfHash for Key {
    fn phf_hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        self.parsed.phf_hash(state)
    }
}

impl Parse for Key {
    fn parse(input: ParseStream<'_>) -> parse::Result<Key> {
        let expr = input.parse()?;
        let parsed = ParsedKey::from_expr(&expr)
            .ok_or_else(|| Error::new_spanned(&expr, "unsupported key expression"))?;

        Ok(Key { parsed, expr })
    }
}

struct Entry {
    key: Key,
    value: Expr,
}

impl PhfHash for Entry {
    fn phf_hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        self.key.phf_hash(state)
    }
}

impl Parse for Entry {
    fn parse(input: ParseStream<'_>) -> parse::Result<Entry> {
        let key = input.parse()?;
        input.parse::<Token![=>]>()?;
        let value = input.parse()?;
        Ok(Entry { key, value })
    }
}

struct Map(Vec<Entry>);

impl Parse for Map {
    fn parse(input: ParseStream<'_>) -> parse::Result<Map> {
        let parsed = Punctuated::<Entry, Token![,]>::parse_terminated(input)?;
        let map = parsed.into_iter().collect::<Vec<_>>();
        check_duplicates(&map)?;
        Ok(Map(map))
    }
}

struct Set(Vec<Entry>);

impl Parse for Set {
    fn parse(input: ParseStream<'_>) -> parse::Result<Set> {
        let parsed = Punctuated::<Key, Token![,]>::parse_terminated(input)?;
        let set = parsed
            .into_iter()
            .map(|key| Entry {
                key,
                value: syn::parse_str("()").unwrap(),
            })
            .collect::<Vec<_>>();
        check_duplicates(&set)?;
        Ok(Set(set))
    }
}

fn check_duplicates(entries: &[Entry]) -> parse::Result<()> {
    let mut keys = HashSet::new();
    for entry in entries {
        if !keys.insert(&entry.key.parsed) {
            return Err(Error::new_spanned(&entry.key.expr, "duplicate key"));
        }
    }
    Ok(())
}

fn build_map(entries: &[Entry], state: HashState) -> proc_macro2::TokenStream {
    let key = state.key;
    let disps = state.disps.iter().map(|&(d1, d2)| quote!((#d1, #d2)));
    let entries = state.map.iter().map(|&idx| {
        let key = &entries[idx].key.expr;
        let value = &entries[idx].value;
        quote!((#key, #value))
    });

    quote! {
        phf::Map {
            key: #key,
            disps: &[#(#disps),*],
            entries: &[#(#entries),*],
        }
    }
}

fn build_ordered_map(entries: &[Entry], state: HashState) -> proc_macro2::TokenStream {
    let key = state.key;
    let disps = state.disps.iter().map(|&(d1, d2)| quote!((#d1, #d2)));
    let idxs = state.map.iter().map(|idx| quote!(#idx));
    let entries = entries.iter().map(|entry| {
        let key = &entry.key.expr;
        let value = &entry.value;
        quote!((#key, #value))
    });

    quote! {
        phf::OrderedMap {
            key: #key,
            disps: &[#(#disps),*],
            idxs: &[#(#idxs),*],
            entries: &[#(#entries),*],
        }
    }
}

#[proc_macro]
pub fn phf_map(input: TokenStream) -> TokenStream {
    let map = parse_macro_input!(input as Map);
    let state = phf_generator::generate_hash(&map.0);

    build_map(&map.0, state).into()
}

#[proc_macro]
pub fn phf_set(input: TokenStream) -> TokenStream {
    let set = parse_macro_input!(input as Set);
    let state = phf_generator::generate_hash(&set.0);

    let map = build_map(&set.0, state);
    quote!(phf::Set { map: #map }).into()
}

#[proc_macro]
pub fn phf_ordered_map(input: TokenStream) -> TokenStream {
    let map = parse_macro_input!(input as Map);
    let state = phf_generator::generate_hash(&map.0);

    build_ordered_map(&map.0, state).into()
}

#[proc_macro]
pub fn phf_ordered_set(input: TokenStream) -> TokenStream {
    let set = parse_macro_input!(input as Set);
    let state = phf_generator::generate_hash(&set.0);

    let map = build_ordered_map(&set.0, state);
    quote!(phf::OrderedSet { map: #map }).into()
}